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Stability of vertical natural convection boundary layers: 
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Linear stability theory is applied to the natural convection boundary layer 
arising from a vertical plate dissipating a uniform heat flux. By using a numerical 
procedure which is much simpler than those previously employed on this prob- 
lem, computer solutions are obtained for a much larger range of the Grashof 
number (G). For a Prandtl number (a) of 0.733, it is found that, as G --f co: the 
effect of temperature coupling vanishes more rapidly than that of viscosity; 
the upper branch of the neutral curve is oscillatory but does approach a finite 
non-zero inviscid asymptote. For moderate and large values of a, a loop appears 
in the neutral stability curve as a result of the merging of two unstable modes. 
As (T + 00, the mode associated with the uncoupled (i.e. Om-Sommerfeld) prob- 
lem rapidly becomes less unstable than that arising from the temperature coup- 
ling, with the stability characteristics being independent of the thermal capacity 
of the plate. For small values of CT, only one unstable mode is found to exist 
with the coupling effect being negligible in the case of large thermal capacity 
plates but markedly destabilizing when the thermal capacity is small. 

By obtaining numerical results out to G M 1O1O for the cases c = 0.733 and 
6.7, it  becomes possible to attempt to directly relate the theory to the actual 
observance of turbulent transition. Based upon comparison with available 
experimental data, empirical correlations are obtained between the linear sta- 
bility theory and the rhgimes in which: (i) the boundary layer is first noticeably 
oscillatory; (ii) the mean (temporal) flow quantities first deviate significantly 
from those of laminar flow. 

~ ~~~ ~~ ~ ~- 

1. Previous investigations 
Since the interferometric study of Eckert & Soehngen (1951)) considerable 

attention has been given to the stability of vertical natural convection boundary 
layers. The earliest analytical investigations in this field, those of Plapp (1957) 
and Szewczyk (1962)) were based upon the asymptotic expansion technique 
(for large values of the Grashof number, G) which had previously been employed 
successfully in the stability of forced flow boundary layers. However, such 
theoretical results for the natural convection case were found to be incom- 
patible with existing data, the theory predicting the flow to be much more stable 
than had been observed experimentally. This shortcoming of the asymptotic 
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expansion technique, combined with the complexity of such a procedure, indi- 
cated that here was a problem to be handled by a computer. 

Kurtz & Crandall(l962) obtained the first numerical solutions, integrating the 
uncoupled disturbance vorticity equation by means of a finite-difference tech- 
nique. Subsequently, Nachtsheim (1 963) used a forward-integration technique 
and obtained solutions to the coupled vorticity and energy disturbance equations. 
He found that the buoyancy force arising from the temperature disturbance had 
a rather small effect upon the stability a t  a Prandtl number (c) of 0-733, but a 
very significant destabilizing effect at  c = 6-7. The results for c = 0.733 were 
corroborated by the hot-wire investigation in air performed by Colak-Antic 
(1964); however, the dye-trace data in water obtained by Sxewczyk (1962) 
appeared to be in closer agreement with the uncoupled stability theory at  a = 6-7. 
It was this latter result which led Sparrow, Tsou & Kurtz (1965) to assume that 
coupling could be neglected for large u and, therefore, to study the a -+ cc limit 
with the disturbance temperature omitted. (It is shown in the present work tha t  
the coupled theory for u = 6-7 is compatible with the data of Szewczyk (1962) 
and others, and that the coupling effect is the prime source of instability for 
large a.) 

Although the above investigations concern an isothermal plate, the corre- 
sponding problem for a uniform-heat-flux plate was studied in the series of papers 
by Polymeropoulos & Gebhart (1967), Knowles & Gebhart (1968, 1969) and 
Dring & Gebhart (1968, 1969). The numerical results for this flow situation were 
found to be very similar to those of the isothermal plate when scaled in terms of 
the Grashof number (for a given u); in addition, the analysis and computations 
of Knowles & Gebhart (1968) showed that the stability was significantly affected 
by a thermal capacity coupling between the wall and the fluid. By employing an 
interferometer and hot-wire probes, portions of the coupled neutral stability 
curve were determined for a = 0.733 and 6.7; it was found that these experimen- 
tal results agreed with the theory, as did the measured disturbance temperature 
and velocity distributions normal to the plate, together with their rate of 
amplification in the streamwise direction. 

Recently, Gill & Davey (1969) considered the stability of a ‘buoyancy layer’ 
(i.e. the one-dimensional flow arising from a doubly infinite, vertical plate heated 
to a uniform temperature excess relative to a linearly stratified external tempera- 
ture field). They obtained coupled neutral curves numerically for a large range of 
a (note: a appeared only in the disturbance energy equation, the non-dimen- 
sionalized primary flow being independent of c) and found the instability arising 
from coupling (or buoyancy) to be progressively more important with increasing 
a. Based upon these results, they inferred the appropriate limiting process: 
G = G(a) as a -+ co, corresponding to the near-critical or nose region (i.e. the 
regime in G in which the flow is first unstable) of the buoyancy-driven mode, 
and proceeded to determine the first two terms in an asymptotic expansion for the 
disturbance field as a -+ CO. In addition, they numerically solved the correspond- 
ing inviscid problem and substantiated the existence of an unstable wave-number 
(or frequency) band in the inviscid limit, as expected from the presence of an 
inflexion point in the primary velocity profile. 
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In  the present paper, consideration is again given to the case of a uniform- 
heat-flux vertical plate. By using a numerical technique which is largely due to 
Mack (1965), coupled solutions are obtained for values of (T between 0.01 and 
100 and for a much larger range of G than in former studies. In  turn, these 
numerical solutions lead to some significant results which are enumerated in the 
present paper and its sequel (Hieber & Gebhart 1971, hereafter referred to as 
(B)) wherein asymptotic expansions are obtained for the limit (T --f co. 

2. The governing equations 
Considering the case of a uniform-heat-flux vertical plate, we employ the 

notation of Sparrow & Gregg (1956) and take the characteristic speed ( U ) ,  
length (6) and temperature difference (AT) to be 

x being measured vertically upwards (the plate coinciding with the positive x 
axis), q being the uniform heat flux, v the kinematic viscosity, k the thermal 
conductivity, p the coefficient of thermal expansion and g gravity. Applying the 
Boussinesq approximation and restricting attention to the boundary-layer 
region (y = O(6) < O(x)) ,  we employ the standard procedure in linear stability 
theory of superimposing an arbitrarily small disturbance upon the primary 
flow such that the stream function and temperature distribution are of the form 

where physical quantities correspond to the real part of complex functions, 
7 = y/S is the ‘similarity’ variable and 

= a@lay, v = - a$iax, 

(ZG, v )  being the velocity components in the ( x ,  y )  directions and y the co-ordinate 
normal t o  the plate. Unless stated otherwise, the frequency w will be taken to be 
real and y to be complex (amplification of the disturbance therefore being spatial, 
corresponding to dy&x c 0). 

In  the limit 7 fixed as G* -+ m, the governing equations for the primary flow 
reduce to the boundary-layer equations 

F“ + 4FF” - 3F’F’ + H = 0, 

H” + 4 4 F H ’  - P’H) = 0, 
(4  1 
( 5 )  

(6) 

subject to the boundary conditions 

p’(a3) = 0 = H(m) = H ’ ( 0 )  = P(0) = H’(0) -t 1. 

The governing equations for the disturbance field, as expressed in terms of the 
linearized vorticity and energy equations, assume the standard form 

40-2 
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where a = 6dy/dx,  c = w&/Ua. 

The real part of a is the non-dimensionalized wave-number. Noting that at < a;, 
it follows that c, is approximately equal to  the non-dimensionalized phase speed. 

Equations (7) and (8) are based upon the 'parallel mean flow' approximation 
of neglecting the algebraic x dependence of (2)-(3) [which includes the entire 5 
dependence of the primary flow] relative to the exponential x dependence, eiy(=). 
This follows from assuming that Idy/dxl = O(l/S) and noting that 

XIS = O(G*) > O(1) 

in the boundary-layer rbgime. 
By neglecting the algebraic x dependence of (2)-(3) in obtaining (7 ) - (8 ) ,  some 

terms of O(G*-l) have been omitted from the latter equations. However, these 
terms can be shown to involve lower-order derivatives than appear on the right- 
hand side of (7)-(8) and therefore may be neglected, the O(G*-l) terms being 
significant only in those regions of the boundary layer in which the 9 derivatives 
of the disturbance field are large (in terms of G*). 

The boundary conditions for the disturbance field are 

$(a) = 0 = $'(a) = O ( a )  = #(O) = $'(O) = O(0) or @(O), (9) 

where the choice of the last condition in (9) depends upon the ability of the plate 
(in terms of its thermal capacity) to follow the temperature oscillation of the dis- 
turbance field. This coupling between the plate and the fluid results in an ad- 
ditional parameter (cf. Knowles & Gebhart 1968); for present purposes it is 
sufficient to  consider the two limiting cases of a 'fast' oscillation (relative to the 
response time of the plate), for which B(0) = 0, and a 'slow' oscillation, for 
which8'(0) = 0. 

It should be mentioned that the reason for employing the form eir(z), rather 
than the more standard eiYz, is that the precise x dependence of the exponent is 
not known upriori. In particular, Knowles & Gebhart (1969) have found experi- 
mentally that the disturbance wavelength grows approximately as xs for the 
case of a uniform-heat-flux plate. This result has been verified theoretically by 
Dring & Gebhart (1969) who found that, a t  fixed w ,  the numerical value of c, re- 
mains fairly constant as the disturbance moves downstream; due to the non- 
dimensionalization of c, this means that the phase speed and, hence, the wave- 
length are proportional to x2. It is noted that the computed values of the current 
investigation are in agreement with the above results. I n  particular, the calcula- 
tions indicate that the waves of maximum amplification are characterized by a 
wavelength and phase speedwhich are proportional to xn where, for g = 0.733, n 
varies monotonically from approximately 0.65 to  0.75 in the C* range of 200- 
1000 whereas, for g = 6.7, n lies between 0.56 and 0-58 in the G* range from 100 
to 1000 (to be compared with an experimental value of 0.56 & 0.04 obtained by 
Knowles & Gebhart (1969) in a silicone oil of = 7.7). 
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3. Some heuristic arguments 
Nachtsheim (1963) has shown that the system (7)-(8) possesses three linearly 

independent integrals which vanish at infinity. Denoting these integrals as 
6J, (q52, 02) ,  (& 03), they may be chosen such that, as 7 3 co, 

(with F, = lim F(7)  and A being positive constants). Therefore, the solution to 

( 7 ) - (  9) is expressible as 
7-m 

$ =  $1fB2$2+B3$3,  0 = 0 1 + B 2 e 2 + B , e 3 ,  (11)  

where the coefficient of 4, has been chosen to be unity, thereby fixing the arbitrary 
scale of the disturbance level. 

Ostrach (1964) has shown that ($1, 0,) is associated with the inviscid limit and 
that ($2, 02), ($,, 0,) are characterized, respectively, by the exponential behav- 
iours 

exp ( - S n [ i n G * ( F ’ - c ) ] ~ d v ) ,  exp ( - / ‘[ iarG*(P’-c)]hdq) .  (12) 

For convenience, we will denote ( )1, ( )2, ( )3 as the inviscid, the viscous uncoupled 
and the viscous coupled integrals (‘ coupling ’ referring to the dependence of the 
disturbance velocity upon the 0 field via the buoyancy term in (7)).  Of immediate 
interest are the following properties of these integrals: 

where we are considering a and IT to be fixed as G* + co. The indicated properties 
of ( ),are applicable except within the two ‘critical ’layers, of O(G*-i) in thickness, 
which need not concern us provided cr is bounded away from zero, assuring that 
such layers are removed from the wall; the last relation in (13) arises from the 
fact that ( ), is associated with a zeroth-order coupling effect, the term O&G* 
effectively behaving as a forcing function in (7 ) .  

Based upon (11) and (13), some important conclusions can be drawn con- 
cerning the behaviour of the disturbance field as G* + co. Considering ct to be 
specified and c to be the eigenvalue, we turn first to the inviscid problem (denoting 
the corresponding eigenva,lue and eigenfunction with a superscript tilde) : 

L($;c“) = (P’-~“)($’’-a2~)-”’’~ = 0; 6 = o at 7 = 0,m. (14) 
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Since F' and F"' are exponentially small as 7 --f 00, it follows that 6 = fil (where 
L(g1; c") = 0 and g1 - era? as 7 --f 00) with c" = E(a) chosen such that &(O) = 0. 

Denoting the corresponding uncoupled (Orr-Sommerfeld) problem with a 
superscript caret, we have: 

1 L($;i?) = -(p-2a2$"+a4$); $= 0 = $' at 7 = 0 , ~ .  (15) 
?&G* 

If we were to take i? = C, we would then have 

= &+O(G*-l), 

resulting in &(O) = O(G*-l), &(O) = O(1). However, since &(0)/$2(O) = O(G*3), 
it follows that, with i? = c", the function 

$ = $ l + B 2 $ 2  

can satisfy the condition $' (O)  = 0 by a proper choice of 8, but $ ( O )  will remain 
non-zero, of O(G*-t). Hence, noting that 

(16) 
a a 
%( 11 = O(l) ,  ,clog( 12 = O(G*% 

we are led to the well-known result (cf. Morawetz 1952): 

i?(a, G*) = E(a) +O(G*-g). (17) 

Turning now to (7)-(9), we first consider the case O(0) = 0. If we assume that 
A 

G = c^ and B, = B,, it then follows from (8) and (13) that, neglecting terms of 
O(G*-l), 

4 ( 0 )  = F'(0) H'(o)  - c^  &(O) = O(G*d), 

(It is assumed that g =i= 1 . )  In  order that O(0) = 0, it  is then necessary that 
B3S3 = O(G*-&) in the region near the wall, indicating (on the basis of (13)) 
that the contribution of ( )3 to $ ( O )  and $ ' ( O )  is of O(G*-,) and O(G*-S), respec- 
tively. In addition, still assuming that c = 6 ,  we have 

56, = $1+0(G*-l), $2 = (1 +O(G*-l)) $2, 

where the terms of O(G*-l) arise from the coupling term in (7). Therefore, with 
c = i? and B, = B,, the conditions $ ( O )  = 0 = q5'(0) are satisfied to  O(G*-l). 
Resorting again to (1 6 ) )  we are led to the result: 

C(E,  G*) = i?(a, G*) + O(G*-l). (18) 

For the case O'(0) = 0, one finds that B3/3j(0) = O(1); the remainder of the 
argument proceeds as above. Hence, (18) applies in this case also. 

We note that, whereas ( )* is a viscous boundary layer (corresponding to the 
region 7 = O(G*d)) which is required in order to cancel the slip associated with 
( )1, ( is a thermal boundary layer which is required in order to satisfy the 
temperature boundary condition at 7 = 0. Of prime importance in this last 
regard is the property that ( )3 is effectively a temperature disturbance, the 
associated velocity being smaller by O(G*-l). 
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It is to be noted that the above heuristic argument leading to (18) is essentially 
equivalent to a method employed by Ostrach & Maslen (1961) in analyzing the 
stability of natural convection channel flow. However, in relating their results 
to the stability of natural convection boundary layers, the above authors, in 
effect, took thewavelength to be O(x)  rather than O(S), and were therebyled to the 
erroneous conclusion that coupling is a zeroth-order effect as G* -+ 03. 

In  particular, the results in (17 )  and (18) indicate that, as G* -+ co, the effect 
of coupling vanishes more rapidly than that of viscosity. This is borne out in the 
numerical results presented in the next section. 

4. Some numerical solutions 
The results of the present section are based upon a numerical procedure which 

is significantly simpler than those previously employed on this problem. Basic- 
ally, the method is the same as that employed by Mack (1965) in his stability 
analysis of the compressible forced flow boundary layer. 

As was done by Dring & Gebhart (1968), we integrate in from the edge of the 
boundary layer, employing the form indicated in equation (11). However, 
unlike the previous analysis, we do not assume the values of B, and B, but rather 
integrate 4, and $3 separately. Specifically, for given real values of G* and 
wSlU, we guess a complex value for a(note: c = wS/Ua) and, starting with (10) 
as initial values for the integrals, employ a fourth-order Runge-Kutta method 
in order to integrate (7)-(8) across the boundary layer. Obtaining the values of 
the integrals at  the wall, we determine B, and B, by applying two of the boundary 
conditions at  7 = 0; the remaining boundary condition, O(0) = 0, say, is satisfied 
only if a takes on an appropriate value (eigenvalue) for the given G* and wS/U. 
Typically, the value of a must be determined via an iterative process. For example, 
if the assumed value of a results in O(0) = x $. 0, the value of a is then changed 
slightly to a + Aar and the integration repeated, resulting in O(0) = x + Ax, say. 
Employing the Cauchy-Riemann relations (N,(O)/aa, = Mi( O)/aa,, etc.) and 
approximating partial derivatives with finite differentials (a&( O)/aa, FZ Axr/Aar, 
etc.), an improved value for a is readily obtained via a simple linear extrapolation. 
This process is then repeated successively until lO(0)l is sufficiently small 
( < typically). 

The simplification of the present technique is apparent: rather than guessing 
the value of three complex numbers (as in the methods of Nachtsheim (1963) 
and Dring & Gebhart (1968)), only the value of a must be assumed. Hence, the 
problem is reduced to finding a point in two-dimensional rather than six-dimen- 
sional space. This simplification is particularly advantageous as G* increases 
since, due to parasitic growth (see Kaplan 1964 or Betchov & Criminale 1967) in 
the numerically determined ( the value of B, or B, rapidly increases. In fact, 
unless a purification scheme such as that of Kaplan (1964) were employed, any 
forward-integration procedure would be limited in a* by the size of B, or B, 
relative to the number of significant figures available to the computer (e.g. with 
16 significant figures, the method would break down as B, or B, approached lola). 

The results presented below are based upon the above technique with the 



632 C. A .  Hieber and B. Gebhart 

mesh size (h )  and boundary-layer edge (qe) chosen in order to minimize computer 
time and still assure adequate accuracy (typically, a,. and a, are correct to within 
0.1 and 1 %, respectively). For example, the calculations for a = 0.733 are based 
upon h = 0.1 and qe = 5 ;  for a = 100, qe = 14 with h = 0.1 for q < 2 and h = 0-2 
for q > 2; for a = 0.01, re = 20 with h = 0.1 for y < 1 and h = 0.2 for y > 1. 
(The use of two mesh sizes in the case of extreme values of a is a consequence of 
the two-layer structure which the primary flow exhibits as either a -+ 0 or 

All computations were performed in double precision on an I.B.M. 360/65. 
In  some cases, the above method was supplemented with the purification scheme 
of Kaplan (1964). Specifically, purification was employed in obtaining the large 
G* portion of the uncoupled neutral curve for a = 0.733 (figure 6), the results 
(other than in the near-critical region) for a = 0.025 (figure 8 ( b ) )  and a = 0.01 
(figure 8(c)),  and the coupled neutral curve in the large G* portion of figure 
8 ( e )  [a = 6-71. In the first of these cases, the purification was exactly the same as 
that employed by Kaplan (1964), ( )1 being adjusted at  each mesh point (by 
the addition of an appropriate multiple of ( )2) such that 

a + Go). 

(F’ - c) ($4; - a”l) - F”’q5, = 0. 

For the cases a = 0.025 and a = 0-01, both ( and ( )3 were corrected relative to 
( )z  [( )2  being the most rapidly increasing integral (as q decreases) when a < 1, 
see equation (12)], ( being purified according to the above inviscidrelation and 
( )3 being a,djusted such that 

8: - i a a ~ * ( ~ i  - c) 8, = 0. 

In  the case a = 6.7, ( 
according to the above inviscid relation and ( )3 being adjusted so that 

and ( )z were purified relative to ( ( )1 being corrected 

$3” - iaG*(F’ - c) & = 0. 

4.1. Prandtl number of 0.733 

For a = 0.733, the contours of constant ai corresponding to amplification (ai < 0) 
and neutral stability (ai = 0) are shown in figures 1 and 2 for the conditions 
S(0) = 0 and S’(0) = 0, respectively. In  each case, the neutral curve exhibits 
the characteristic ‘nose’ first obtained by Nachtsheim (1963). For the first time, 
however, it  is seen in figure 2 that there exists a loop in the neutral stability curve 
for the case O’(0) = 0. (The results obtained by Knowles & Gebhart 1968 for 
this case were curtailed a t  G* x 180, i.e. just before the looping region.) In fact, 
the case S(0) = 0 has a similar loop which, however, occurs in the damped region 
and therefore does not appear in figure 1 .  As will be shown immediately, these 
loops arise from it merging of two sets of eigenvalues in the (a*, wS/U)  plane. 

In  order t o  study the details of the loop structure, the contours of constant 
ai are presented in figure 3 for the loop region for the case O(0) = 0. The two 
indicated families of curves are related as follows. Starting at A and making a 
traverse along the rectangular contour ABCD or any other closed contour 
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FIGURE 1. Contours of constant ai( < 0) for u = 0.733, 8(0) = 0. Dotted curve 
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FIGURE 2. Contours of constant ai( < 0) for u = 0.733, e’(0) = 0. 
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enclosing any of the constant ai loops, a, varies continuously but does not return 
to its original value upon arriving at A ; rather, ai assumes the value associated 
with the other family. Following a second traverse, the original value of a, 
is recovered. On the other hand, in traversing the rectangular contour AEFD or 
any other closed contour not containing any of the constant a( loops, the original 
value of ai is obtained each cycle. It follows that, with regard to the behaviour 
of ai in the (G*, US/ U )  plane, there exists a point P which is common to the interior 
of all the constant a, loops and which, in effect, is a branch point of the first order. 

0.080 

0.078 

0,076 

0.074 

0.072 
5 
20’ 

0.070 

0468 

0,066 

0.064 

0.062 
120 130 1 40 150 

G* 

FIGURE 3. ‘Loop region’: contours of constant ai for u = 0.733, O(0) = 0. 
Curve (i) is locus of points a t  which a, is the same for both modes. 

Corresponding contours of constant a,., presented in 6gure 4, indicate the 
existence of constant a,, loops in the same region of the (a*, wS/U) plane. With 
curve (i) in figure 3 being the locus of points at which ai is the same for both 
‘branches ’ (or modes), and curve (ii) in figure 4 the corresponding curve for a,,, 
it  is seen that P must be the intersection point of (i) and (ii); that is, P is the point 
where the two values of a coalesce. (It is tacitly assumed that any other sets of 
eigenvalues which may exist will be highly damped throughout the (G*, wS/U)  
plane.) In  order to clearly define the two modes, we choose to consider a ‘branch 
cut ’ from P along curve (ii) and identify mode I with the branch having a nega- 
tive ai at point A .  Hence, mode I includes the upper portion of the amplified 
region in figure 1 whereas mode I1 contains the nose region. The cut is shown as a 
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dotted line in figure 1. For all other subsequent cases for which this bi-modal 
structure exists, the modes are to be identified in terms of a similar cut. 

It should be noted that Nachtsheim (1963) recognized that the nose portion of 
the neutral stability curve actually corresponded to a second mode. However, 
he did not obtain two sets of eigenvalues. Recently, Gill & Davey (1969), in their 
stability analysis of a ‘buoyancy layer ’, did obtain two sets of eigenvalues. They 
did not, however, pursue the matter of relating these modes and, as a, result, did 
not discover any loops. 

4 0.076 

.___I 0.074 

130 140 l 2 l - i  150 0.062 
120 

G* 

FIGURE 4. ‘ Loop region’: contours of constant I % ~  for c = 0.733,8(0) = 0. 
Curve (ii) is locus of points at which CC, is the same for both modes. 

By comparing figures 1 and 2 in the large G* portion, it is seen that both cases 
appear to approach the same asymptotic behaviour. Making comparison with the 
corresponding uncoupled results of figure 5,  it is clear that the coupled stability 
characteristics for either B(0) = 0 or B’(0) = 0 approach those of the uncoupled 
problem as G* -+ m; this is in agreement with $ 3  where, according to equation 
(IS), the coupling effect vanishes as O(G*-l). 

In  order to examine the stability problem for extremely large G*, it follows that 
i t  is sufficient to consider the uncoupled case. This has been done in figure 6 
where the upper portion of the uncoupled neutral curve for (r = 0-733 is presented 
for values of G* out to 18000. The behaviour of the curve is peculiar in that it is 
oscillatory but does seem to approach a definite limit. 
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FIGURE 5. Contours of constant ai ( < 0) for 0' = 0.733, uncoupled. 
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FIGURE 6. Upper portion of uncoupled neutral curve for 0' = 0.733. 

Dashed line corresponds to neutral stability in inviscid limit. 
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FIGURE 6. Upper portion of uncoupled neutral curve for 0' = 0.733. 

Dashed line corresponds to neutral stability in inviscid limit. 
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In order to identify the latter limit, we solved the corresponding inviscid 
problem (integrating in the complex 7 plane along the path indicated at  the top 
of figure 7) and determined the frequency at  which the inviscid flow is neutrally 
stable; this is indicated as a dashed line in figure 6. Hence, the uncoupled (and, 
on the basis of previous results, the coupled) problem is seen to be asymptotic 
to the inviscid case as G* -+ co. In  addition, the coupling effect is seen to vanish 
more rapidly than that of viscosity; this is in agreement with $3, (17) and (18). 

Integration path 

0 
- 0.4 4 5 

w s / u  
FIGURE 7. Inviscid limit for cr = 0.733. Drtshed curve is uncoupled 

result at G* = 10000. 

Additional results for the inviscid problem are indicated in figure 7 .  For com- 
parison, the uncoupledresults for ai at G* = 1000Oareindicatedasadashedcurve. 
It is noted that c, --f FLax as wS/U -+ 0 (cf. Drazin & Howard 1962 or Gill & Davey 
1969) ; on the other hand, the value ofc,at the upper neutral point does not appear 
to have any particular significance. (One might expect it to equal the base flow 
speed at  the inflexion point, Finfl, thereby eliminating one of the critical points; 
such is not the case, however, since Finfl NN 0.193.) 

4.2. Small Prandtl number jluids 

Restricting attention to the case B(0) = 0, the constant ai( < 0) contours are 
presented in figures 8 ( a ) ,  (b)  and ( c )  for u = 0.1, 0.025 and 0.01, respectively. 
For comparison, the uncoupled neutral curves are indicated as dashed contours. 
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It is immediately evident that, for this range of cr, the neutral stability curve is 
only weakly dependent upon the coupling effect and upon u. On the other hand, 
it is noted that the maximum value of - ai decreases rather rapidly as cr decreases. 
In  addition, unlike the above results for cr = 0.733, it is seen that thereis only one 
mode in each of these small Prandtl number cases. 

Hence, on the basis of these three values of cr, it would appear that, for small 
cr, the stability characteristics are fairly well approximated by those of the un- 
coupled problem with the flow rapidly becoming less unstable as Q decreases. 
In  particular, we would therefore expect the neutral curve for O’ (0 )  = 0 to be 
quite similar to those for the uncoupled and O(0) = 0 cases. Such, however, is not 
the case, as was discovered by determining the former curve for cr = 0.1 (shown 
as dotted contour in figure 8 (a) ) .  Although the boundary-layer regime does not 
actually correspond to such small values of G*, the dotted curve in figure 8 (a )  does 
imply that the boundary layer is markedly unstable when 6’(0) = 0. Hence, the 
results presented in figures 8 (a)-(c) suggest that, for extremely small u, coupling 
is rather negligible when O(0) = 0 but has a significantly destabilizing effect 
whenO’(0) = 0. 

4.3. Large Prandtl number J’Euids 

Results for the case O(0) = 0 are presented in figures 8 (d)-(g) for cr = 2.5,6-7,  25, 
100. (The last two curves are limited in G* due to the large growth of ( )3 across 
the boundary layer-of the order of 1080, the upper limit of the computer.) It is 
immediately evident that mode I1 becomes the predominant source of instability 
as cr becomes large. In  particular, from figures 8 ( d )  and ( e )  it appears that the 
unstable region corresponding to mode I is always contained by that of the 
uncoupled problem; the uncoupled neutral curvesin figures 8 (f) and (9)  thenimply 
that the critical G* of mode I rapidly increases with cr. (It is to be noted that the 
paper by Sparrow et al. (1965) is restricted to the uncoupled problem. Therefore, 
at best, their results could be used to describe mode I of the coupled problem.) 
On the other hand, the critical G* of mode I1 appears to reach a minimum at 
cr M 25 and to slowly increase with larger values of u. In  addition, as u increases, 
the non-dimensionalized frequencies corresponding to the nose region of I1 are 
seen to become conspicuously larger than those of I or the associated uncoupled 
mode, suggesting the existence of two distinct characteristic frequencies as 
u + co. This matter is considered in detail in (B). 

For comparison, the neutral stability curve for O‘(0) = 0 has been indicated in 
figure 8(g) for cr = 100. The similarity in the neutral curves for 6(0) = 0 and 
O’(0) = 0 suggest that, as (r +- co, the stability characteristics become indepen- 
dent of the thermal capacity of the plate. This is proved in (B). 

5. Transition to turbulence: comparison of theory and experiment 
The purpose of the present section is to establish correlations between the 

above theoretical results and some of the experimentally determined flow regimes 
which comprise the turbulent-transition process. For the sake of convenience, 
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40 100 400 I000 4000 
G* 

a* 
FIGURE 8. Contours of constant ai ( < 0) for 6( 0) = 0. Dashed line is uncoupled neutral curve; 
dotted curve is neutral curve for B’(0) = 0. (a )  r = 0.1; ( 6 )  cr = 0.025; ( c )  cr = 0.01; (d) 
u = 2.6; ( e )  u = 6.7; (f) r = 2 5 ;  (9)  u = 100. 

we focus attention on the r6giines in which: (i) the boundary layer is first notice- 
ably oscillatory; and (ii) the mean (temporal) flow quantities first deviate signifi- 
cantly from those of laminar flow. We will arbitrarily denote the latter rkgime 
as the ‘onset of turbulence’. (In the case of the uniform-flux plate, (ii) corre- 
sponds to  the stage at which the local mean wall temperature first deviates 
markedly from the xi dependence of the laminar rbgime.) Clearly, (ii) is arbgime 
wherein the non-linear interaction between the oscillations cannot be ignored, 

41 F L Y  48 
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indicating that linear stability theory is no longer applicable. However, by com- 
paring the above theoretical results with pertinent data, it is hoped that some 
empirical correlation can be established between the results of linear stability 
theory and the onset of turbulence. 

Such a correlation does exist for boundary layers in forced flow, Smith (1957) 
having shown that, provided the free stream is of sufficiently small turbulent 
intensity, the transition ‘ point’ corresponds to the Reynolds number at  which max (s widt) M 9, where : wiis the imaginary part of the frequency (temporal amplifica- 
tion) as determined from linear stability theory; the integration is along constant 
frequency (w,) paths (describing the propagation of disturbance waves) from the 
neutral stability curve to the given Reynolds number; the maximization is with 
respect to all constant frequency paths. In  the present case (spatial amplifica- 
tion), the corresponding integral, denoting the exponential growth of the dis- 
turbance field, is - t J a i d G *  (cf. Dring & Gebhart 1968), where the integration 
is as above. 

0.12 - 

0.10 - 

0.08 - 
b 
& ’ 0.06 - 

0.04 - 

0.02 - 

0.14 

1 I I I I 

0 200 400 600 800 1000 
Q* 

FIGURE 9. Contours of constant - ) J a i d G *  for cr = 0.733, O(0) = 0. Dashed curves are 
constant frequency paths. Data: 0, Eckert & Soehngen (1951); + ,Polymeropoulos (1966). 

The calculated spatial amplification characteristics of Dring & Gebhart 
(1968), when combined with the paths followed on the stability plane by constant 
frequency disturbances as they are convected downstream, indicate that the 
present natural convection flow highly favours a narrow band of frequencies for 
amplification. In  a recent review of such instability, Gebhart (1969) has analyzed 
the available experimental indications, in gases and water, of the first local 
appearance of highly amplified disturbances and/or transition arising from 
‘natural’ or ‘random ’ disturbances; all points, when converted to the co-ordinates 
of the stability plane, were found to lie in the portion of the unstable region of 
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highest amplification rate. The present results assess this correspondence in 
terms of more complete results from stability theory. 

Contours of constant values of the exponential growth factor, - al aidG*, are 
presented in figures 9 and 10 for the cases CT = 0.733, S(0) = 0 and CT = 6.7, 
S(0) = 0; the dashed curves correspond to fixed values of w, denoting the propa- 
gation of disturbance waves in the stability plane (note G* N x? whereas, for w 
constant, wS/U N x-9). It should be observed that corresponding plots for 
S’(0) = 0 would not be significantly different, at  least in the range G* 2 500 
[compare figure 1 with 2 and figure 8 ( e )  with the corresponding results (out to 
G* = 300) for cr = 6.7, B’(0) = 0 obtained by Dring & Gebhart 19681. 

I I 1 I I I 
0 200 400 600 800 1000 

a* 
FIGURE 10. Contours of constant -&SaidG* for CT = 6.7, O(0) = 0. Dashed curves 

are constant frequency paths. Data: + , Knowles & Gebhart (1969). 

Data points, indicating the first appearance of natural disturbances as ob- 
served by Eckert & Soehngen (1951)) Polymeropoulos (1966) and Knowles & 
Gebhart (1969)) are also indicated in figures 9 and 10. (The first two experiments 
correspond to cr M 0.733, the last to CT E 7.7.) Each point being associated with a 
particular frequency, it is clear these oscillations do not represent turbulence 
but rather correspond to sinusoidal waves travelling in the vertical direction. The 
large spread between the data of Eckert & Soehngen (1951) and that of Poly- 
meropoulos (1966) in f i p e  9 is apparently due t o  a significant difference in the 
random disturbance level present in the two experiments, the former being per- 
formed in a room, the latter within a pressurized tank. Additional experimental 
results are indicated below. 

Eckert, Hartnett & Irvine (1960), employing a smoke-trace technique in 
studying the case of an isothermal vertical plate in air, observed a two-dimen- 
sional wave pattern in the range 600 5 G* 5 750 with the waves propagating in 
the vertical direction and eventually rolling up into transverse and longitudinal 
vortices which proceeded to break up abruptly at  G x 7.3 x lo9 (G* E 870). 

41-2 
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Szewczyk (1962), in his dye-trace studies in water (at a M 6-7), first observed 
oscillations at  G M lo9 (G* M 600). Cheesewright (1968), using a thin platinum 
wire as both a resistance thermometer and a hot-wire anemometer, studied the 
case of an isothermal vertical plate in air (a M 0.733) and observed the following 
rkgimes: first appearance of significant fluctuations at G M 2 x lo9 (G* M 625); 
start of significant changes in the shape of the mean temperature profile (hence, 
in the local mean heat transfer from the plate) a t  G* M 785; cessation of major 
changes in the shape of the mean temperature profile at G* M 885. Vliet & Liu 
(1969), employing thermocouples and a hot-film anemometer in studying the case 
of a uniform-heat-flux plate in water, varied the bulk temperature of the fluid 
from 45” F to 120°F (thereby varying a from 10.5 down to 3.5) and, based upon 
their data for which T, - T, was small ( 6 15 OF), found that the initial transition 
process (based upon the trend in the local mean heat transfer coefficient) occurred 
at G* z 600,1000 and 1100 for a z 10,6 and 3.5, respectively, with the final stage 
of transition occurring at  G* z 900, 1250, 1350. 

In terms of G*, the experimental results are seen to be compatible with the 
linear stability theory, the interpretation being that ever-present small distur- 
bances in the physical system must first be considerably amplified, as they 
propagate in the vertical direction towards larger G*, before becoming discern- 
ible to the observer. With respect to d / U ,  the theory and the data presented in 
figures 9 and 10 are seen to be in very good agreement. Furthermore, it is noted 
that the g dependence of the transition process observed by Vliet & Liu (1969) is 
compatible with the theoretical results €or a = 2.5, 6.7 and 25 appearing in 
figures S(d)-(f), the latter implying that, in this range of a and with G* fixed, 

max(-$JaidG*) 
increases with a. 

On the basis of the above results for a = 0-733 and 5 = 6.7, it  seems reasonable 
to conclude that, for typical background conditions and any given a, the natural 
convection boundary layer arising from a uniform-heat-flux vertical plate can be 
expected to be noticeably oscillatory at the G* for which max ( - ti  aidG*) M 6. 
Seeking an analogous result for the ‘onset of turbulence’, we note that the first 
significant changes in the shape of the mean temperature profile observed (at 
G* z 785) by Cheesewright corresponds (in figure 9) to max ( - $1 aiidG*) M 10, 
whereas the corresponding observation (at G* z 1000 for a M 6) by Vliet & 
Liu corresponds (in figure 10) to max ( - aidG*) M 1 1 .  This appears to estab- 
lish the desired correlation: for typical background conditions and any given a, 
the ‘onset of turbulence ’ in the boundary layer arising from a uniform-heat-flux 
vertical plate can be expected to occur a t  the G* for which 

max(-$JaidG*) M 10. 

Before concluding, it should be noted that, throughout, it has been assumed 
that, for a given CT, the cases of an isothermal and a uniform-flux plate can be 
directly related to each other in terms of G or G*. (Note for the uniform-flux 
case, G*/Ga = (125/H(O))*, where H is the non-dimensionalized temperature 
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defined in $ 1 ;  for the isothermal plate, G*/Gk = (6251H;(0)1/21)6 where 

in particular, for cr = 0.733 or 6.7, the values of G*/Gi for the two cases lie within 
3 yo of each other). The fact that this led to consistent results, confirms the vali- 
dity of such an assumption. On the other hand, Vliet & Liu (1 969) concluded that 
the flow arising from a uniform-flux plate is significantly more stable than that 
of the isothermal case, suggesting that this may be “a result of the basically 
different fluid dynamics resulting from the two modes of heating ”. In  point of 
fact, the value which they quoted as the start of transition for the isothermal 
plate case actually corresponds to C* z 600 (for (T = 04’33) and, therefore, to 
the first appearance of sma,ll, two-dimensional oscillations; on the other hand, in 
determining the start of transition for the uniform-flux case, they employed their 
own local heat-transfer coefficient data, thereby identifying the start of transition 
with the first significant change in the mean temperature profile. However, as has 
been shown above, the regime in which oscillations first appear is not the same as 
that in which the shape of the mean profile first suffers significant changes, the 
former corresponding to max ( - 2 I uiidG*) z 6,  the latter to 

max(-)/aidG*) M 10. 

The authors wish to acknowledge the support of the National Science Pounda- 
tion through research Grants GK 1963 and GK 18529. 

R E F E R E N C E S  

BETCHOV, R. & CRIMINALE, W. 0. 1967 Stability of Parallel Floux Academic. 
CHEESEWRIGHT, R. 1968 Turbulent natural convection from a vertical plane surface. 

J .  Heat Transfer, 90, 1-8. 
COLAX-ANTIC, P. 1964 Hitzdrahtmessungen des Laminar-Turbulenten Umschlsgs bei 

freier Konvektion. Jahrbuch 1964 der Wissenachaftlichen Cfesellschajt fur Luft-und- 
Raumfahrt E.  V .  pp. 172-176. 

DRAZTN, P. G. & HOWARD, L. N. 1962 The instability to long waves of unbounded par- 
allel inviscid flow. J .  Fluid Mech. 14, 257-283. 

DRINC, R. P. & GEBRART, B. 1968 A theoretical investigation of disturbance amplifica- 
tion in external laminar natural convection. J .  Fluid Me&. 34, 541-564. 

DRING, R. P. & GEBHART, B. 1969 An experimental investigation of disturbance amplifica- 
tion in external nature1 convection flow. J .  Fluid Mech. 36, 447-464. 

ECKERT, E. R. G. & SOEHNGEN, E. 1951 Interferometric studies on the stability and 
transition to turbulence of a free convection boundary layer. Proceedings of the General 
D~cus8iwn on Heat Transfer, London, pp. 321-323. (Published by A.S.M.E.). 

ECDRT, E. R. G., HARTNETT, J. P. & IRVINE, T. F. 1960 Flow visualization studies of 
transition to turbulence in free-convection flow. A.S.M.E. Paper no. 60-WA-250. 

GEBHART, B. 1969 Natural convection flow, instability, and transition. J .  Heat Transfer, 

GILL, A. E. & DAVEY, A. 1969 Instabilities of a buoyancy-driven system. J .  Fluid Mech. 

HIEBER, C.  A. & GEBHART, B. 1971 Stability of vertical natural convection boundary 

91,293-309. 

35,775-798. 

layers: expansions at large Prandtl number. To appear in J .  Fluid Mech. 



646 C. A .  Hieber and B. Gebhart 

KAPLAN, R. E. 1964 The stability of laminar incompressible boundary layers in the pre- 
sence of compliant boundaries. Mass. I w t .  Tech., Aeroelastic & Structures Reaearch 

KNOWLES, C. P. & GEBHART, B. 1968 The stability of the laminar natural convection 
boundary layer. J .  Fluid Mech. 34, 657-686. 

KNOWLES, C. P. & GEBHART, B. 1969 An experimental investigation of the stability of 
laminar natural convection boundary layers. Progress in Heat and Mass Transfer, 
vol. 2. Pergamon. 

KURTZ, E. F. & CRANDALL, S. H. 1962 Computer-aided analysis of hydrodynamic sta- 
bility. J .  Math, Phys. 41, 264-297. 

MACK, L. M. 1965 Computation of the stability of the laminar compressible boundary 
layer. Methods in Computational Physics, vol. 4. Academia 

MORAWETZ, C. S. 1952 The eigenvalues of some stability problems involving viscosity. 
J. Rat. Mech. Anal. 1, 579-603. 

NACHTSHEIM, P. R. 1963 Stability of free-convection boundary layer flows. N A S A  T N  

OSTRACH, S.  1964 Laminar flows with body forces. In Theory of Laminar Flows (ed. F. K. 
Moore). Princeton University Press. 

OSTRACH, S. MASLEN, S. H. 1961 Stability of laminar viscous flows with a body force. 
Int. Heat Transfer Conf., University of Colorado, 1017-1023. (Published by A.S.M.E.). 

PLBPP, J. E. 1957 Laminar boundary layer stability in free convection. Ph.D. Thesis, 
Calif. Instit. Tech. 

POLYMEROPOULOS, C. E. 1966 A study of the stability of free convection flow over a uni- 
form flux plate in nitrogen. Ph.D. Thesis, Cornell University. 

POLYMEROPOVLOS, C. E. & GEBHART, B. 1967 Incipient instability in free convection 
laminar boundary layers. J .  Fluid Mech. 30, 225-239. 

S M ~ ,  A. M. 0. 1957 Transition pressure gradient and stability theory. Proc. 9th Int. 
Congress of Appl. Mech., Brussels, 4, 234-244. 

SPARROW, E. M. & GREW, J. L. 1956 Laminar free convection from a vertical plate with 
uniform surface heat flux. Trans. A.S.M.E. 78, 435-440. 

SPARROW, E. M., Tsou, F. K. & KURTZ, E. F. 1965 Stability of laminar free convection 
flow on a vertical plate. Phys. Fluids, 8, 1559-1561. 

SZEWCZYK, A. A. 1962 Stability and transition of the free-convection layer along a vertical 
flat plate. Int. J. Heat Mass Transfer, 5, 903-914. 

VLIET, G. C. & LIU, C. K. 1969 An experimental study of turbulent natural convection 
boundary layers. J .  Heat Tramfer, 91, 517-531. 

Lab. TR 116-1. 

D-2089. 


